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ABSTRACT

A Single Shot State Detection (SSSD) method is proposed to support a laparoscopic surgery skills training
system — Computer-Assisted Surgical Trainer (CAST). CAST actively assists a trainee with visual, audio,
or force guidance during different surgical practice tasks. In each task, the guidance is provided according
to the target object state, which is one of the key components of CAST. We propose SSSD using deep neural
networks to detect object states in a single image. We first model semantic objects to recognize objects’
state given a training task and then apply a deep learning algorithm, single shot detector (SSD), to detect the
semantic objects. The contribution of this research is to present a unified object state model collaborating
with a deep learning object detector, which can be applied to the surgical training simulator, as well as other
visual sensing and automation systems.

Keywords: object state detection, semantic object, laparoscopic surgery training.

1 INTRODUCTION
1.1 Background

Laparoscopic surgery is a popular and advanced technique, which offers patients the benefits of minimal
invasiveness and fast recovery time. However, one of the main challenges of this technique is the hand-eye
coordination using the monocular endoscopic camera and the long, thin special surgical instruments. Before
the operation on patients, medical students and residents need to take extensive simulation-based training
of laparoscopic surgical training tasks. Currently, the surgical simulators are categorized into two groups:
low fidelity and high fidelity (Hammoud et al. 2008). The fidelity of a simulator is defined by the extent to
which it provides realism through characteristics, such as visual cues, tactile sensations, feedback capability,
and the interaction with a trainee. The most common and inexpensive simulators, the Video Box Trainers
(Scott et al. 2000), are using real surgical instruments and a box with slits on the anterior surface for trocar
insertion, which has limited feedback. In addition, the assessment method of the Video Box Trainers is to
hire a human trainer to directly observe the operation and then the human trainer provides the evaluation
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result. To develop a high fidelity simulator, an intelligent simulator with multiple aspects of feedback, and
an automatic and objective assessment method is important in the surgical simulator development.

1.2 Problem Statement

Computer-Assisted Surgical Trainer (CAST) (Rozenblit et al. 2014) is a simulation-based training system
designed for the laparoscopic surgery skill training. CAST can provide visual-, audio-, force-guidance,
and objective assessment metrics for a trainee in a training task, e.g., Peg Transfer Task (PTT). PTT is the
one of hands-on exams of Fundamentals of Laparoscopic Surgery (FLS) program (2018), developed by the
Society of American Gastrointestinal and Endoscopic Surgeons (SAGES). This program has multiple tests
for trainees to learn the basic laparoscopic skills. CAST aims to support all the tasks of the exams to assist
a trainee to master these skills.

To achieve this goal, CAST is being developed to provide several kinds of the guidance according to the
object states in the training. The object state is defined as the objects’ location and interactions among
objects. For instance, an audio guidance provides audio instructions to lead a trainee to operate an instrument
to grasp a target object based on where the target object and the instrument are and what the interaction
between them is. Hence, the object state in a task is the foundation of the guidance in CAST. All the
guidance is based on the detected object states to provide active or passive guidance, such as overlaying
visual cues, audio instructions, and force feedback. Then the assessment agent in CAST evaluates the
performance of the trainee and presents the assessment results. In short, the object state detection method is
the key of the information processing and feedback generation in CAST.

1.3 Problem Formulation and Research Structure

An object state detection method has two fundamental steps: object state modeling and detection. Each
model would vary due to the unique configurations of different applications, i.e., one single detector is
unlikely to support all kinds of the training tasks in CAST. In this research, we aim to design a common
methodology to model the object state to have a universal state detection method for all the training tasks.
The key to achieving this goal is to convert the object state recognition to an object detection problem. First,
the object state is modeled as a semantic object, which contains the target object class and the interaction
with objects simultaneously. Then a deep learning based object detection method is applied to locate and
detect the designed semantic objects in an image. In our design, it does not matter to choose which kind
of object detection method. However, the performance of our model highly relies on the object recognition
ability of the selected detection method. In this paper, the current state-of-the-art deep learning object
detector, single shot detection (SSD) (Liu et al. 2016), is adopted. Based on our design, each object state,
including location and the interaction with others, in different tasks can be converted into the same type of
the semantic object. Hence, a single object detection method can unify the object state detection process for
different tasks. We name this method as Single Shot State Detection (SSSD).

In summary, this research includes two goals: a) the semantic object modeling for the training task of
the CAST system, b) the semantic object detection using deep learning to effectively support real-time
application of the CAST system. The main contributions of this research are to present an unified object
state modeling and a new application of the existing object detection method. The proposed method can be
applied to not only the surgical training simulator but also any other visual sensing and automation systems,
such as intelligent surveillance systems or autonomous driving systems.

The content of this paper is structured as the following order: 1) the recent research of semantic objects
and object detection are reviewed in the Related Works section, 2) the proposed object state modeling
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method and the utilized detection model are elaborated in the Methodology section, 3) the performance of
the proposed method is evaluated in the Simulation section, and 4) the conclusion is presented in the last
section.

2 RELATED WORKS

In this paper, the object state detection is formulated as the semantic object detection. The related works of
the semantic object detection and the object detection are reviewed in this section.

A semantic object is defined as a representation of a collection of attributes that describes an identifiable
object in the environment (Benson 2000). To detect a semantic object is to interpret the scene semantics. A
large body of work has focused on semantic object segmentation, parsing, and labeling, using either single
image or video images. In this paper, we only focus on the single image approaches. The individual objects
are detected first, and their relationships are then inferred using geometrical model matching (Guenther et al.
2017), Local-Global Long Short Term Memory spatial dependency (Liang et al. 2016), or Graph Topology
(Liang et al. 2016). This approach relies on the spatial relationships among objects to generate the semantics
to label the objects. Another group of researches is based on conditional random field (CRF) to infer the
object semantics (Zheng et al. 2015). This approach still needs to detect the objects first and then build a
factor graph among the detected objects. The two step process, object detection and association, needs high
computational cost to apply to the real-time task. An approach to directly detect semantic object without the
object association process in the real-time manner is missing.

Several high accuracy and efficient modern convolutional neural network (CNN) based object detectors
are devised (Zhou et al. 2014) because of the emerging deep learning techniques. Regional-based Fully
Convolutional Network (RFCN) (Dai and Li 2016) can find the possible region of an object in an image
first and then classify the object in the proposed region. RFCN also utilizes a multi-scale detector in the
detection process to obtain accurate and scale-independent detection results. However, the computational
efficiency of RFCN is constrained by the region proposal process. While an alternative method, You Only
Look Once (YOLO), was proposed as a multibox detector to identify all the possible objects in a single shot
(Redmon et al. 2016), it still suffers from the scale constraint. To solve this problem, single shot detection
(SSD) utilizes the multibox and multi-scale method simultaneously to detect objects in real-time manner
without any constraint (Liu 2016).

Previous works have demonstrated remarkable results in semantic object parsing and object detection, but
none of them can support the real-time application of the object state detection. In this paper, a single shot
state detection (SSSD) method is designed to achieve the object semantics interpretation. With the powerful
feature extraction ability of the deep convolutional network, the object semantics can be estimated from a
single image. The main contributions of this work include 1) a universal semantic object modeling approach
to represent object states, and 2) a new application of the existing object detection using deep convolutional
network. The key advantage of the proposed SSSD method is that the semantic object model can eliminate
the object association process in the detection.

3 METHODOLOGY

3.1 Experimental Task

To verify the design of the proposed SSSD method, a training task is implemented to evaluate the perfor-
mance. We choose PTT, the first hands-on exam in the FLS program, to be our experimental task. It includes
two surgical instruments (graspers) from left and right side, one pegboard with twelve pegs, and six rubber
ring-like objects (triangles) as shown in Figure 1. A trainee is asked to control a grasper to lift a triangle
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from a peg, carry this object to midair, transfer it to the other grasper, and place the triangle on a peg on
the opposite side of the pegboard. If the triangle is dropped during the procedure, the task is terminated and
the trainee fails this exam. In this task, trainees learn how to manipulate grasper-type instruments and then
improve their eye-hand coordination, ambidexterity, and depth perception with the monocular images.

Figure 1: Peg transfer task

3.2 Object State Modeling

An object state model describes the attributes of the target object in the task. We firstly define the target
objects of the task. A trainee should focus on using graspers to control a triangle without dropping it. We
only need to focus on the states of the triangles and graspers, our target objects. The second part of the
model is the definition of the target object states, consisting of two main attributes: location and activity.

The first attribute, location, is the pixel location I; = (cx, cy); of the i*" target object (0; € O, where O is
a set of objects) center in the image. Activity (a; € A, where A is a set of activities), the later attribute,
is the interaction among a target object ¢ and any other objects. For example, a triangle is transferred by a
left grasper to the right one and "being transferred" is the current activity of the triangle object. Therefore,
each target object may have multiple activity attributes. A commonly used state of o; can be presented as
si = (l;,a;), where a; = (a1, a2, ....a;); and j represent the number of activities. The activity set A of
PTT is defined in Table 1. There are some overlapped activities between the triangle and graspers. For
example, the activity “Connect” of a grasper is implicitly a part of the activities “Pick-Place” and “Carry”
of a triangle, while “Free” is a part of the rest activities of the triangle. In other words, the activity attributes
of a grasper can be inferred from those of a triangle, and we only need to focus on grasper’s location. Only
a triangle object has the activity and location in its state.

To eliminate this inconsistency of the object state model, we propose a semantic object state model to
simplify the state definition shown in Table . As a new type of object, semantic object merges an activity
attribute with its object class and then each semantic object (¢; € @), where @ is a set of semantic objects)
has only one attribute, location (i.e., o; can be represented as g;, which has ;).

The advantage of the proposed semantic object is to simplify an object state detection to be an object detec-
tion problem. Instead of detecting the activity and location attributes of the target objects, we only need to
detect the location of the defined semantic objects.

3.3 ingle Shot Detection

After modeling the semantic objects, a semantic object detector is presented in this section. The state-of-
the-art single shot detector, SSD, designed by Liu et al. (2016) is used to achieve our goal in the proposed
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Table 1: Object activity definition table.

Target Object | Activity

On Peg:A triangle is not connected to any grasper but on a peg.

Right Pick-Put: A triangle is connected to right grasper and also on a peg or on the ground.
Triangle Left Carry: A triangle is connected to the left grasper but not on any peg.

Right Carry: A triangle is connected to the right grasper but not on any peg.

Transfer: A triangle is being transferred from one grasper to another but not on any peg.
Out Peg: A triangle is not connecting to any grasper and not on any peg or on the ground.

Left Pick-Put: A triangle is connected to the left grasper and also on a peg or on the ground.

Free: The left grasper is not connecting to any triangle.

Lefi . . .
eft Grasper Connect: The left grasper is connecting to a triangle.

Free: The right grasper is not connecting to any triangle.

Right Grasper Connect: The right grasper is connecting to a triangle.

Table 2: Semantic object model of PTT.

# | Semantic Objects Alias

1 | On-Peg-Triangle onpeg
2 | Left-Pick-Place-Triangle | I-pick

3 | Right-Pick-Place-Triangle | r-pick
4 | Left-Carry-Triangle I-carry
5 | Right-Carry-Triangle r-carry
6 | Transfer-Triangle transfer
7 | Out-Peg-Triangle outpeg
8 | Left-Grasper I-grasp
9 | Right-Grasper r-grasp

method. In this section, the framework of SSD is reviewed. The main design concept - Multiscale Bounding
Box Prediction - and the training configuration are explained.

3.3.1 Multiscale Bounding Box Prediction

The target output of the SSD approach is to predict the presence of an object in different scales. The method
utilized in the algorithm is named Multiscale Bounding Box Prediction. The framework is shown in Figure
2. First, an input image with a labeled ground truth box (GTB) for each object shown in Figure 2(a) is
fed into the feature learning network. The learning network of the SSD model is based on the backbone
of a standard CNN architecture designed for the semantic object classifier. The selected CNN network is
VGG-16 (Simonyan and Zisserman 2014), the architecture of a high quality image classifier (Top place of
Classification Competition in ImageNet ILSVRC-2014) devised by Visual Geometry Group. In the learning
network, the output is evaluated as to multiple fixed scale grid feature maps, indicated by solid lines, and a
set of default boxes with different aspect ratios, indicated by dash lines, at each location, where two exemplar
feature maps 6 x 6 and 4 x 4 are shown in Figure 2(b) and (c).

The different scale feature maps are designed to detect the multiple scale object. In the end, all the feature
maps are collected into the final feature map. In each default box (b, ., where u represents an index of
the default box and v represents an index of the cell) of each cell in the feature map, the shape offsets
50y = (cx,cy,w, h),, and the confidence scores (Cy, , = (c1, Ca..., ¢p)u 0, Where there are p number of
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Figure 2: SSD Multiscale Bounding Box Prediction framework.

semantic objects) for all object classes are predicted. The shape offset contains the center offset (cx, cy) of
the object and the scale ratio of the width (w) and height (h) of the default bounding box.

3.3.2 Training Flow

To successfully train the SSD network to learn the objects, a prepared training set should be ready first and
the loss function and back propagation then can be applied. Overall, the training process is based on the
default box selection, and the quality of the model highly depends on the dataset augmentation.

First, the ground truth information has to to be assigned in the training dataset and to match the designed
output maps format. The labeling process is simply defining the bounding box and the object class of the
target objects in the training images. Once the assignment is done, the label information of the images is
converted to the output format of the SSD model following the selected default boxes and the corresponding
feature map scale. To determine the default boxes corresponding to a ground truth box, we match all the
default box in different scales and find the one with best jaccard overlap (Erhan et al. 2014), which is
confined over a threshold (> 0.5) to reduce the candidates and simplify the learning problem.

4 SIMULATION
4.1 Task and Metrics

In the simulation, the evaluation is based on the collected dataset of PTT, named CAST PTT dataset, which
is collected through the CAST system. Two trials of the operation are proceeded and recorded as in the
CAST PTT dataset. Each operation is a complete flow to transfer all the six triangles from one side to the
other. There are in total 5000 sample images extracted from the two recorded videos. The training set has
randomly selected 4000 images, while the testing set has the rest 1000. The statistics of the semantic object
amount is listed in Table 3. The onpeg has the highest amount in each set, because only one triangle is
allowed to be moved in every single operation and the rest of the five triangles remain on the pegs. To the
contrary, the least semantic object is the outpeg due to the rapid movement of a dropping triangle. The I-
and r-graspers have the similar amount of the count as the captured frames. Only in few cases the I- and
r-graspers have different counts as the captured frames, because the tip of the grasper is out of the scene and
it is not possible to label the out-of-scene grapser.

To evaluate the proposed method, we first calculate the confusion matrix for the semantic object classifica-
tion. We then compute the mean and standard deviation of the Intersection of the Union ({oU) and the error
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Table 3: PTT semantic objects statistics in training and test sets.

Semantic Object | Training Set Count | Test Set Count
onpeg 19942 4995
transfer 902 228
outpeg 371 94
1-pick 376 108
r-pick 220 53
lI-carry 904 226
r-carry 300 183
l-grasp 4000 1000
r-grasp 3967 995
y total 30982 7882

distance (d.,,) between the ground truth and the prediction respectively for each semantic object to verify
the accuracy of the location detection.

The IoU is the intersection of the union between the ground truth and the detected bounding boxes. the
definition of IoU is as:

ToU — Area of Overlap
% = "Area of Union -

The higher ToU indicates better detection accuracy. The d.,, is the difference between the centers of the
ground truth and the detected bounding boxes, which can help measure the localization result for each
semantic object.

4.2 Simulation Configuration

To design a deep learning algorithm for the CAST system, Python and Tensorflow in Linux Ubuntu system
are used to develop the prototype under the GPU computing setting. A common NVIDIA GTX 1080 graphic
card is used in the development and simulation to ensure the algorithm design is feasible in the personal
computing environment. All input images are resized to a 300 x 300 from the original size, e.g. 1280 x 800,
of the training image and the model fine-tune on the pretrained VGG-16 (Simonyan and Zisserman 2014).
The predictions happen in less than 17 milliseconds (around 60 frames per second), which is fast and feasible
for real-time applications.

4.3 Results

The quantitative simulation results are shown in Table 4 and Table 5. The Table 4 is the confusion matrix of
the classification detection results, while the Table 5 indicates the error of the localization detection result.
The example of the visual simulation result is shown in Figure 3. The full sequence of the simulation was
recorded as video and available in the following URL: https://youtu.be/9gPthdBiwoE.

In Table 4, the onpeg, outpeg, l-grasp, and r-grasp have both over 90% accuracy and precision. These
are static semantic objects and the detection process is similar to the conventional object detection, so the
detection results are stable and accurate. The precision of the I-pick and l-carry are under 80% and lower
than the ones of the r-pick and r-carry. However, the total amount of the l-pick and l-carry are higher
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Figure 3: Simulation result.

than the ones of the r-pick and r-carry. It indicates that the left-hand movements are more than the right-
hand and the detection of the left side semantic objects is also less precise. This result matches the testing
scenario, which the operator of PTT is right-handed. The right-handed operator may take longer time and
be less stable while proceeding in the left-hand movements in the task take longer time and less stable.
Therefore, the left side cases may have more samples and the labels of the semantic objects may be not very
accurate in the case of the transition between onpeg and 1-pick.

Table 4: Confusion matrix of the semantic object detection.

Prediction
onpeg | transfer | outpeg | l-pick | r-pick | l-carry | r-carry | l-grasp | r-grasp || Accuracy

onpeg 4881 4 0 64 12 4 2 2 24 97.76
transfer 2 167 0 0 0 42 17 0 0 73.25
= | outpeg 0 0 86 0 0 4 3 0 0 92.47
S| l-pick 2 0 0 105 0 1 1 0 0 96.33
5 r-pick 1 0 0 0 49 0 2 0 0 94.23
g I-carry 0 10 3 1 0 210 1 1 0 92.92
£ | r-carry 1 0 5 0 0 15 161 0 1 87.98
© I-grasp 49 0 0 0 0 0 1 946 5 94.51
r-grasp 0 1 2 0 0 0 1 12 980 98.39

Precision | 98.87 91.45 90 61.7 | 89.67 | 75.72 84.13 98.38 97.03

Further, the precision of the l-pick case is much lower than other cases and the false detection is mainly on
the onpeg case. The similar situation happens on the r-pick case. The possible reason is that the labels of
the onpeg and pick cases are not accurate due to the vague transition between the onpeg and pick cases in
a 2D image. In both the visual and computational process, it is difficult to identify the object state (semantic
object) without the 3D location of the grasper and the triangle when the grasper is approaching the triangle.
The performance of the detection between the onpeg and pick cases is limited although the object detection
algorithm works well on all the other cases. The possible solution is to involve the 3D information, such as
stereo image pairs or depth information to improve the accuracy of the labels and the detection.

In Table 5, the evaluation metrics of the localization are presented. The JoU represents the coverage percent-
age of the prediction bounding box on the ground truth bounding box, and the higher IoU value indicates a
better alignment result of the bounding box. The standard deviation (std) of IoU indicates the variation of
the ToU and the smaller std is better. All the cases in the evaluation have over 80% IoU on average. The
onpeg case has the highest ToU mean at 90% because onpeg is relatively simple and stable. To further
elaborate, the bounding box sizes of all the onpeg cases are similar to yield a simple learning target, and
training set size of onpeg is the largest one that can help the network learn the features more effectively.
However, onpeg also has largest std because the the the bounding box size of onpeg is the smallest one
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among all the semantic objects. The triangle in the onpeg case is at the farthest location among all cases.
The rest of the semantic objects have similar performance.

Table 5: Localization detection evaluation.

Semantic Object ToU (%) derr(pixel)
mean | std | mean | std

onpeg 092 |0.09 | 2.17 | 7.73
transfer 0.83 | 0.07 | 5.56 | 3.88
outpeg 0.86 | 0.06 | 3.09 | 2.85
I-pick 0.86 | 0.04 | 2.28 1.45
r-pick 0.85 | 0.06 | 3.12 | 1.74
I-carry 0.84 | 0.07 | 544 | 4.66
r-carry 0.85 | 0.06 | 5.12 | 4.08
l-grasp 0.85 | 0.07 | 6.83 | 4.73
r-grasp 0.86 | 0.07 | 7.04 | 5.91

y total [ 0.89 [0.09]3.66 [7.16 |

The d... is the distance in pixel scale between the prediction bounding box on the ground truth bounding
box. The smaller d.,, shows a more accurate prediction of the bounding box center. Similarly, the onpeg
case shows the low d.,, mean at (= 2.2 pixels) and high std (= 7.7) with the same reasons as the IoU.
Surprisingly, the outpeg, 1-pick, and r-pick cases have low d.,, mean (2.3 ~ 3.1 pixels) and lower std
(1.5 ~ 2.8). The outpeg case is relatively simple because the triangle in this case has no interaction with
any other objects. On the other hand, the 1- and r- pick cases have relatively smaller bounding boxes and
the interaction among the triangle, peg, and grasper is clear and relatively more significant. The rest of the
semantic objects, including outpeg, I-carry, r-carry, l-grasp, and r-grasp, which are closer to the camera
and have larger bounding boxes, have the higher d.,, mean (= 6 pixels) and lower std (= 4.5).

5 DISCUSSION AND FUTURE WORK

Overall, the semantic objects can be detected effectively using SSSD method and the average accuracy is
over 90%. The left-handed related semantic objects and the pick case perform significantly worse than
others. The left-handed related semantic objects suffer from the right-handed operator of the trial and
the countermeasure is to employee the expert, who can operate the right- and left-handed objects without
significant difference, to proceed to sample trial. The pick case has the physical constraint from the 2D
images and it is impossible to identify the onpeg and pick cases with 100% certainty when they are very
close visually or computationally. The only way to solve this problem is to introduce the 3D information,
such as the stereo image pairs or the depth image, to assist the labeling, learning, and prediction process.

However, SSSD method can only support the 2D image and the performance of our model suffered in some
specific cases, which need the 3D location information of each object. Therefore, we also plan to expand
the SSSD method to support 3D information but still keep using the single 2D image input in our future
work. The significance for simulation-based surgical training is in the ability to recognize in real-time the
state of a task (and its objects) so that we could introduce computer-based assistance in completing an
exercise with erroneous actions. For instance, when a trainee drops a triangle in the peg transfer task, haptic
and visual assistance can be provided to quickly correct this error based on the SSSD. The potential for
using this method in the operating theatre is strong as well in that it could assist the surgeons in case of an
unexpected event during a procedure. To validate the performance of SSSD on other setups, we are working
on preparing experiment for other training tasks. The ultimate goal is to extend our method to support all the
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FLS training tasks. Eventually, we will generalize SSSD to other applications and dataset, such as Human
Object Interaction Dataset (Chao et al. 2015).

On the other hand, the object detection method is the key to successfully detect the object states. The
detection methods can detect semantic objects when they have better ability to extract object features and
make associates among these features. In this paper, we directly adopt SSD, which is one of the method with
best balance between the accuracy and computational efficiency (Huang et al. 2017). There are other options
which can be good candidates to perform SSSD, such as RFCN and YOLO. Thus, the further evaluation of
different algorithms on SSSD is planed in the next step. Second, there are also different backbone, e.g.,
RESNET (Deng et al. 2009), Inception (Szegedy et al. 2015), Mobilenet (Howard et al. 2017), etc., which
can be applied in the base network to improve the performance. We will also evaluate these alternates as a
future work.

CAST software is being developed using C++ programming language under windows. We aim to support
CAST in both GPU- and CPU-based computing environment. Thus, we are evaluating a feasibility to use
TensorFlow’s C++ API under Windows configuration with Intel i7-6700 CPU and NIVIDA GTX 1080
GPU. However, unlike our simulation setup, the prediction takes about 80 msec using only CPU (12.5 PFS)
and 20 msec using GPU (50 FPS) with C++ API. The computation efficiency of CPU-only configuration
needs to be improved to support the real-time processing, e.g. processing rate > 30 FPS, in CAST. Hence,
we are working on developing a lighter weight deep learning method to reduce the computation and fit our
system configuration. Eventually, SSSD will be able to support real-time processing under both CPU- and
GPU-based computing system within the CAST system.

6 CONCLUSION

A novel model - Single Shot State Detection (SSSD) - is presented in this paper to recognize the object state
to support a laparoscopic surgery skills training system, CAST. The novelty of this paper is that we pro-
posed a semantic object model to replace the object state model and convert the object state detection to an
object detection problem. This idea significantly reduces the complexity of the object interaction detection
algorithm in computer vision. Based on the current state-of-the-art object detector SSD, we successfully
achieve over 90% accuracy in out test task PTT. The computational efficiency of the proposed method is
over 60 FPS to support the most real-time applications. This method is feasible to be applied to any Human-
Object-Interaction task. In the next step, we plan to generalize the semantic object model to other FLS or
other training tasks and consider the different hardware configuration to support more applications.
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